Towards information-theoretic K-means clustering for image indexing
نویسندگان
چکیده
Information-theoretic K-means (Info-Kmeans) aims to cluster high-dimensional data, such as images featured by the bag-of-features (BOF) model, using K-means algorithm with KL-divergence as the distance. While research efforts along this line have shown promising results, a remaining challenge is to deal with the high sparsity of image data. Indeed, the centroids may contain many zero-value features that create a dilemma in assigning objects to centroids during the iterative process of Info-Kmeans. To meet this challenge, we propose a Summation-bAsed Incremental Learning (SAIL) algorithm for Info-Kmeans clustering in this paper. Specifically, SAIL can avoid the zero-feature dilemma by replacing the computation of KL-divergence between instances and centroids, by the computation of centroid entropies only. To further improve the clustering quality, we also introduce the Variable Neighborhood Search (VNS) metaheuristic and propose the V-SAIL algorithm. Experimental results on various benchmark data sets clearly demonstrate the effectiveness of SAIL and V-SAIL. In particular, they help to successfully recognize nine out of 11 landmarks from extremely high-dimensional and sparse image vectors, with the presence of severe noise. & 2012 Elsevier B.V. All rights reserved.
منابع مشابه
A Comparative Study of Spectral Clustering and Information-theoretic Co-clustering for Video Shot Categorization
Automatic categorization of video shots is important in video indexing and retrieval. To improve the effectiveness of video shot categorization, current researchers have addressed two major issues: i) spatio-temporal coherence from shot to shot, and ii) bipartite correlation between descriptive features and shot categories. In recent works, spectral clustering and information-theoretic co-clust...
متن کاملNGTSOM: A Novel Data Clustering Algorithm Based on Game Theoretic and Self- Organizing Map
Identifying clusters is an important aspect of data analysis. This paper proposes a noveldata clustering algorithm to increase the clustering accuracy. A novel game theoretic self-organizingmap (NGTSOM ) and neural gas (NG) are used in combination with Competitive Hebbian Learning(CHL) to improve the quality of the map and provide a better vector quantization (VQ) for clusteringdata. Different ...
متن کاملAssessment of the Performance of Clustering Algorithms in the Extraction of Similar Trajectories
In recent years, the tremendous and increasing growth of spatial trajectory data and the necessity of processing and extraction of useful information and meaningful patterns have led to the fact that many researchers have been attracted to the field of spatio-temporal trajectory clustering. The process and analysis of these trajectories have resulted in the extraction of useful information whic...
متن کاملPersistent K-Means: Stable Data Clustering Algorithm Based on K-Means Algorithm
Identifying clusters or clustering is an important aspect of data analysis. It is the task of grouping a set of objects in such a way those objects in the same group/cluster are more similar in some sense or another. It is a main task of exploratory data mining, and a common technique for statistical data analysis This paper proposed an improved version of K-Means algorithm, namely Persistent K...
متن کاملExtraction of Web Image Information: Semantic or Visual Cues?
Text based approaches for web image information retrieval have been exploited for many years, however the noisy textual content of the web pages makes their task challenging. Moreover, text based systems that retrieve information from textual sources such as image file names, anchor texts, existing keywords and, of course, surrounding text often share the inability to correctly assign all relev...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Signal Processing
دوره 93 شماره
صفحات -
تاریخ انتشار 2013